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Abstract

This thesis investigates the predictive power of various macroeconomic indica-

tors on the excess returns of the S&P 500 index using an advanced machine

learning framework. Leveraging a dataset comprising 125 macroeconomic vari-

ables from the FRED-MD database, the study employs Principal Component

Analysis (PCA) and Di�usion Index methods to reduce dimensionality and ag-

gregate macroeconomic information. The research reveals that a set of princi-

pal components e�ectively captures a signi�cant economic signal, which exhibit

a robust relationship with S&P 500 excess returns. The signal demonstrates

strong predictive power during various economic conditions, except for a no-

table period between 1990 and 1995. Furthermore, a comparative analysis

with the consumption-based signal by Atanasov et al. highlights the superior

performance of aggregating various macroeconomic indicators versus a single

variable in terms of predictive strength, and robustness across market condi-

tions. This comprehensive approach to forecasting can aid investors in making

informed decisions by providing insights into the long-term impacts of macroe-

conomic factors on market returns.

Keywords: macroeconomic indicators, cyclical component; excess stock re-

turns; forecasting; principal component analysis, di�usion index.

∗ ∗ ∗

Introduction

Macroeconomic variables are essential for understanding and predicting stock market returns

due to their in�uence on the overall economic environment in which companies operate. These

variables, such as GDP growth, in�ation rates, and employment �gures, a�ect consumer and

business con�dence, which in turn in�uence spending, investment, and �nancial risk-taking.

The relationship between macroeconomic variables and stock market returns has been a long-

standing topic of investigation in �nancial research. Numerous studies have explored the pre-

dictive power of various indicators, such as in�ation, money supply, unemployment, and interest

rates. While some studies have found evidence of signi�cant predictability for speci�c variables,

others have not, leading to concerns about data mining and the need for a more comprehensive

understanding of return predictability.

This paper aims at re-examining the predictability of US stock returns using a comprehensive

approach. We leverage a large dataset of 125 macroeconomic variables from the FRED-MD

monthly database, encompassing various aspects of the economy such as output production,

income, labour market, housing, and consumption. This broad scope allows us to capture a

more complete picture of the economic landscape and potentially identify stronger predictive

signals. To address the challenges of handling numerous features and potential over�tting,

we employ and compare two di�erent aggregation methods: Principal Component Analysis

(PCA) and di�usion indexes. PCA e�ciently reduces dimensionality by transforming correlated
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variables into uncorrelated principal components, capturing the essential statistical features of

the data. Di�usion indexes, on the other hand, provide an alternative approach by measuring

the proportion of indicators moving in a speci�c direction within pre-de�ned clusters.

Our study encompasses both in-sample and out-of-sample analysis to assess the robustness

of the constructed signal. We employ a XGBoost regression model for in-sample analysis from

January 1959 to December 2012, then extend the analysis to out-of-sample data until 2023 to

further validate our �ndings. The research framework we have developped strives to achieve

an unbiased forecasting process by using point-in-time data analysis and rolling predictions.

Our results are analyzed through a rigorous econometric approach, using the Ordinary Least

Squares regression (OLS) method enhanced by the Newey-West variance estimator to evaluate

our signal statistical signi�cativity and its predictive power. Furthermore, we delve into the

signal's characteristics by examining its predictive power across di�erent market conditions, its

reliability over time, its performance for various time horizons, and its e�ectiveness in predicting

industry portfolio returns.

Our �ndings reveal several key insights. First, we identify 15 principal components e�ec-

tively capturing signi�cant aspects of the overall economy such as production indexes, labour

market indicators and price indexes, ensuring that the essential economic signals are well-

represented in our analysis. Out of these principal components, we �nd that the 9 �rst compo-

nents under a 20 years rolling window provide the strongest setting to forecasting excess market

returns. The signal exhibits a strong relationship with S&P 500 returns, demonstrating the

potential for economic factors to predict future market movements. The signal exhibits reliable

predictability during the in-sample period, with a notable exception between 1990 and 1995.

These results hold even when extending the analysis to the out-of-sample period. The perfor-

mance of the signal is optimized for a 2-year time horizon, re�ecting the long-term in�uence of

economic factors on the market. However, the signal also show strong performance for higher

frequencies such as 3 months and 1 year horizons, making it relevant for investment purposes.

Furthermore, the analysis identi�ed signi�cant di�erences in predictability across industries,

with sectors like High-Tech and Non-Durables showing stronger signal performance. Finally,

using di�usion indexes built on clusters of indicators as an alternative aggregation method, we

are able to establish statistically signi�cant relationship with excess returns and build a com-

peting signal aggregating macroeconomic data. While the di�usion index signal demonstrates

strong overall performance, it is less robust than the PCA signal when the prediction horizon

is shorter.

The �rst section of the paper provides a review of the literature. Section 2 details our

methodology to construct our signals. Section 3 contains the signal construction details and

analysis. Section 4 studies the robustness of the signal on the out-of-sample period from 2012

to 2023. Section 5 performs a complementary analysis on di�erent time horizons and portfolios

to study the e�ectiveness of the signal as an investment indicator. Section 6 compares the

merits of building a signal aggregating several macroeconomic indicators to a well-performing

single indicator based signal built by Atanasov et al. [2]. Section 7 expands our research to
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another dimensionality reduction methodology based on di�usion indexes. Finally, Section 8

establishes the performance attribution to the predictors built in this paper.

1 Literature Review

Macroeconomic variables signi�cantly in�uence �rms' expected cash �ows and the rate at which

these cash �ows are discounted. For instance, higher GDP growth typically boosts consumer

spending and business investment, bene�ting �rms. Conversely, a decline in GDP growth

can reduce demand for goods and services, negatively impacting corporate pro�ts. Although

the hypothesis that macroeconomic developments a�ect equity returns has intuitive appeal,

obtaining robust evidence of stock return predictability has proven challenging. Flannery et

al. (2002) [10] argue that while macroeconomic in�uences are theoretically sound, empirical

evidence remains limited. For example, Bossaerts and Hillion (1999) [3] con�rm in-sample

return predictability but fail to demonstrate out-of-sample predictability for international stock

markets. The impact of real macroeconomic variables on aggregate equity returns has been

di�cult to establish, possibly due to their nonlinear and time-varying e�ects (Flannery and

Protopapadakis, 2002 [10]).

Despite these challenges, considerable empirical studies have made progress in investigat-

ing the predictability of stock returns using macroeconomic variables, especially over longer

time horizons. Guru-Gharan et al. (2009) [13] found that the explanatory power of selected

macroeconomic variables on U.S. stock market returns increases signi�cantly when the time-

frame changes from monthly to yearly. Since the pioneering work of Chen, Roll, and Ross

(1986) [6] and in line with Merton's (1973) [19] theoretical contributions, researchers have ex-

plored the possibility that state variables such as in�ation and economic growth may be sources

of systematic investment risk and can explain the cross-sectional dispersion of stock returns.

Empirical evidence indicates that stock market performance is highly correlated with economic

fundamentals, making a model based on this relationship essential for predicting future trends

(Morck et al., 2000 [20]; Rapach et al., 2005 [22]; Ahn et al., 2019 [1]).

Recent literature has demonstrated that deviations of factor prices from values implied by

macroeconomic conditions predict both in-sample and out-of-sample factor returns, resulting

in signi�cant economic gains for mean-variance investors (C. Favero, A. Melone et al., 2020 [9]).

Engle et al. (2013) [7] found that macroeconomic factors such as industrial production growth,

interest rates, in�ation, and unemployment often determine stock market movements. Analysis

of 12 industrialized countries by Rapach et al. (2005) [22] found that interest rates are the most

e�ective macroeconomic predictors of stock returns. Liu and Kemp (2019) [15] investigated the

predictive accuracy of three macroeconomic variables in forecasting excess returns of the U.S.

oil and gas industry stock index, �nding that macroeconomic variables o�er valuable insights

into forecasting future stock market performance, particularly during bear market conditions.

The literature also proposes various methodological approaches regarding factor timing and

stock return. Factor models, such as those by Fama and French (1993) [8], often abstract from
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the predictability of factors and focus on their ability to generate cross-sectional dispersion

in asset risk premiums. Haddad, Kozak, and Santosh (2020) [14] propose a new statistical

approach to predict anomaly portfolios by predicting their principal components (PCs) using

their book-to-market ratios. However, using many factors to predict stock returns can com-

plicate model accuracy and reliability. To address this, researchers employ methods like the

least absolute shrinkage and selection operator (LASSO) or the elastic net (ENET) to maintain

model stability with numerous variables. Ma, Lu et al. [17] found that a new set of economic

attention indices (MAI) developed by Fisher et al. (2021) could predict stock returns better

than traditional methods, even during unusual events like the COVID-19 pandemic. Rapach

and Zhou (2021) [21] further advanced this �eld by using machine-learning techniques to esti-

mate a sparse principal components (PCs) regression for 120 monthly macroeconomic variables

from the FRED-MD database. Each sparse PC is a sparse linear combination of the underlying

macroeconomic variables, allowing for their economic interpretation.

In our analysis, we use the FRED-MD database to construct a stable predictive model

for the S&P 500 index. Based on 125 macroeconomic variables, we investigate whether these

FRED-MD time series can better predict stock market returns compared to a single variable

such as aggregate consumption, suggested by Atanasov et al. (n.d.) [2]. We extract the cyclical

components of the macroeconomic time series likely containing information for predicting excess

market returns. In addition, we build our model using two dimensionality reduction methods:

PCA and Cluster Di�usion index, with the aim to compare the impact of both methods in

the prediction of stock return. This research contributes to the broad empirical studies on

stock market prediction and aims to prove predictability with a more comprehensive model

encompassing a large set of accessible macroeconomic variables. Practically, this study can

forecast the return signal of the S&P 500 index, aiding investors in their decision-making

processes in the U.S. stock market.

2 Methodology

2.1 Exploratory Data Analysis

For our analysis, we collected data through the FRED database which stands �for Federal

Reserve Economic Data". The FRED-MD is a large macroeconomic dataset publicly accessible

containing 135 monthly U.S. indicators suitable for empirical analysis requiring economic data.

To explore the dataset, we selected nine common macroeconomic indicators resulting in a

sub-sample of nine time series for the exploratory data analysis (EDA). The selected indicators

are: Industrial Production (INDPRO), Initial Claims for Unemployment Insurance (CLAIMSx),

Building Permits (PERMIT), Inventory-to-Sales Ratio (ISRATIOx), Consumer Sentiment In-

dex (UMCSENTx), Real M2 Money Stock (M2REAL), Moody's Baa Corporate Bond Minus

FEDFUNDS (BAAFFM), Personal Consumption Expenditures: Chain Index (PCEPI), and

the S&P 500 P/E Ratio.

Through EDA, we carefully examined the subset of 9 time series, providing crucial insights
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into the dynamics and inherent properties of our data as well as hihghlighting common prob-

lematics with handling economic time series :

Trend and Stationarity: We observed that some series exhibit signi�cant trends and lack

stationarity. Such characteristics can undermine the predictive power of models that

assume data stationarity, necessitating detrending or di�erencing to stabilize the mean.

Variability: High variability in some series can impact the stability and reliability of predic-

tions. This calls for normalization techniques or transformation methods such as log-

scaling to manage extreme values and make the series more homoscedastic.

Distribution and Skewness: Our analysis reveals that the series often do not follow a nor-

mal distribution and exhibit considerable skewness. This deviation from normality sug-

gests that standard assumptions of many statistical tests and models might be violated,

requiring non-parametric methods or data transformation to correct skewness.

Noise Levels: The presence of signi�cant noise in the data series complicates modeling by

obscuring underlying patterns. Smoothing techniques, such as moving averages or expo-

nential smoothing, might be necessary to clarify the data's signal.

These preliminary observations are critical for the subsequent feature engineering phase. They

guide our strategy for preprocessing and transforming data to enhance model accuracy and re-

liability. By addressing these characteristics proactively, we aim to maximize the informational

content of features, crafting a robust analytical framework that leverages advanced statistical

techniques and machine learning models to generate reliable forecasts. This approach not only

strengthens the validity of our results but also enhances our ability to generalize �ndings to

the out-of-sample period, thus ensuring the practical applicability of our research in real-world

scenarios.

2.2 Cyclical Component Extraction

To e�ectively use macroeconomic variables in predicting stock market returns, it is important

to not only examine their raw values but also extract their cyclical components. This ap-

proach focuses on deviations from long-term trends, capturing more volatile �uctuations that

can provide valuable information about future economic conditions. By isolating the cyclical

component, analysts can better identify the timing of economic expansions and contractions,

which are closely linked to market performance. Furthermore, the frequency of the cyclical

component that can be extracted from economic time series matches more closely that of the

excess return time series, likely providing stronger signals for forecasting returns.

The extraction of cyclical components helps mitigate the misleading e�ects of long-term

trends, such as secular increases in productivity or demographic shifts, which might not be

directly relevant for predicting short-term market movements. The focus on the cyclical nature

of economic indicators aligns with the broader �nancial concept that �nancial market prices
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are heavily in�uenced by changes in expectations about the future rather than long-term trend

movements.

To avoid any forward-looking bias, it is necessary to use techniques that extract cyclical

components solely based on past data points. One method used by Atanasov et al. (n.d. [2])

involves using the regression error of a regression on remote lagged values. The authors conduct

the following regression on the consumption time series Ct :

ct = b0 + b1ct−k + b2ct−k−1 + b3ct−k−2 + b4ct−k−3 + ωt

Where ct = log(Ct), k = lag in months. The regression error ωt is the measure of cyclical

consumption cct:

cct = ωt = ct − (b0 + b1ct−k + b2ctk−1 + b3ct−k−2 + b4ct−k−3)

We will use this method and compare it to a simpler and faster alternative that does not

add layers of complexity.

The second method consists in detrending the time series by subtracting a moving average

from the time series, this moving average representing the trend component. Denoting (Xt)

our time series, we can extract the cyclical component cct as :

∀t, cct = Xt −
1

L

L∑
l=1

Xt−l

Where L is the size of the moving average window.

Whenever possible, that is when the series does not initially contain negative or null values,

we apply this method to the log-transformation of the time series Xt, xt = log (Xt) :

∀t, cct = xt −
1

L

L∑
l=1

xt−l

We favour log-transformed variables because they tend to linearize time series and smooth

variations naturally. Both methods need to be calibrated well by testing di�erent values for k

and L. We privilege a 1-year window (L = 12) to extract a higher frequency cyclical component

in order to have a better match with the frequency of the excess returns variations, while not

including too much noise contained in even higher frequency variations.

2.3 Principal Components Analysis

Handling more than a hundred features in predictive models poses signi�cant challenges, pri-

marily due to the risk of over�tting. Additionally, macroeconomic variables tend to be highly

correlated, making it hard to determine which variable really contributes to improving the pre-

diction. To mitigate these issues, this study employs Principal Component Analysis (PCA) on

the cyclical components of our time series data. PCA is instrumental in dimensionality reduc-
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tion, symplifying the modeling process without the loss of substantial information. It achieves

this by transforming highly correlated variables into a new set of linearly uncorrelated variables

termed principal components, which encapsulate distinct statistical features of the data.

Principal Component Analysis is a sophisticated statistical technique that simpli�es high-

dimensional data while preserving essential trends and patterns. This is achieved through the

following methodological steps:

Standardization: Prior to analysis, it is imperative to standardize each feature by centering

around the mean and scaling to unit variance. This standardization is crucial as PCA's

sensitivity to the variances of initial variables can signi�cantly in�uence the results.

C =

(
cci − µi

σi

)
i=1,..,N

Covariance Matrix Computation: PCA involves the computation of the covariance matrix

of the data, which provides insights into how variables co-vary from their mean. We note

this covariance matrix

Σ =
1

T − 1
CTC

Eigenvalue Decomposition: The covariance matrix is subjected to eigenvalue decomposition

to extract its eigenvectors and eigenvalues. This decomposition reveals the directions of

maximum variance in the data (the principal components) and the relative signi�cance

of these directions.

Σ = V ΛV T , V ∈ ON (R)

Component Selection: The eigenvectors are ordered by their corresponding eigenvalues in

descending order. Selection of principal components is typically based on those that

account for the majority of the variance observed in the original dataset

Λ = Diag (λ1, . . . , λN) , λ1 ≥ . . . ≥ λN

Dimensionality Reduction: Data projection onto the selected principal components trans-

forms the original high-dimensional data into a new space with reduced dimensions.

T = (PC1, . . . , PCK) = C (V1, . . . , VK)︸ ︷︷ ︸
First k eigenvectors

This transformation ensures that the �rst principal component captures the highest possible

variance, and each subsequent component, in turn, has the highest variance possible under

the constraint that it is orthogonal to the preceding ones. This process e�ectively reduces the

dimensionality of the data by transforming it onto a new coordinate system de�ned by the

principal components. Thus, we are able to engineer relevant features suitable for forecasting

models.
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2.4 The target variable

Our target variable corresponds to log excess market returns for the S&P500 index over a

certain horizon of h months. It is computed as follows :

yh = Rh − rF

Rh = (Rh,t)t=1,...,T =

(
log

(
St+h

St

))
t=1,...,T

= (log (St+h)− log (St))t=1,...,T

Where St is the index value of the S&P500 at time t, Rh is the log return of the S&P500 over

a h-month horizon and rF is the �risk free� rate which is proxied by the 3-months treasury bill

secondary market rate.

Firstly, the use of excess returns, de�ned as the return on the S&P500 over and above

the risk-free rate (here proxied by the 3-months Treasury bill rate), is crucial for isolating

the true performance of the market from that which can be earned without bearing any risk.

This adjustment allows for a more accurate assessment of the risk-adjusted returns, making

it particularly relevant in economic scenarios where risk-free rates may �uctuate due to policy

changes or other economic events.

Secondly, the log transformation of returns, as opposed to simple returns, o�ers several

bene�ts. Log returns are time-additive, a property that simpli�es the aggregation of returns

over time, making them particularly useful for analysis across di�erent horizons. Moreover, log

transformations tend to normalize the returns, reducing the skewness and kurtosis typically

observed in �nancial time series data. This transformation, therefore, helps meet the normality

assumptions required in many statistical techniques used for inference and prediction in �nancial

econometrics.

Furthermore, extending the return calculation over a longer horizon h (several months,

in this case) helps in smoothing out short-term volatility and provides a clearer view of the

underlying trends. Longer horizons �lter out short-term noise and are particularly e�ective

in capturing the e�ects of macroeconomic variables, which typically in�uence markets over

medium to long-term. Macroeconomic variables such as GDP growth rates, in�ation, and

employment statistics tend to evolve over several months or quarters, and thus, using a longer

horizon aligns the target variable more closely with the periodicity of predictive macroeconomic

indicators.

Therefore, using log excess returns calculated over an extended horizon as a target variable

in modeling the S&P500 not only enhances the robustness of the statistical analysis but also

ensures that the insights derived are more re�ective of the underlying economic fundamentals,

thereby improving the ability to leverage macroeconomic variables for prediction. However,

reducing the frequency of excess returns variations by extending the horizon can reduce the

practical use for investment purposes, by reducing the number of independent bets a portfolio

manager can make. This problem will be further studied later in this paper.
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2.5 The prediciton model

Before diving into the prediction model we used to build the signal, it is important to dwell

on how we ensure the absence of forward looking biases in the way the model is trained and

makes predictions. We implement a rolling window model that works as follows :

� Select a training window [W0 : WL] and a test window [WL+1 : WL+J ] and the subset of

data that will be used to train and test the model (Xt)t∈ [W0:WL]
, (yh,t)t∈ [W0:WL]

, and test

the model (Xt)t∈ [WL+1:WL+J ]
.

� Apply the transformations to the train and test window data in order to obtain the

features used in the model, which correspond to principal components of the cyclical

components :

(Xt)t∈[W0:WL]
→ (cct)t∈[W0:WL]

→ (Tt)t∈[W0:WL]

(Xt)t∈[WL+1:WL+J ]
→ (cct)t∈[WL+1:WL+J ] →(Tt)t∈[WL+1:WL+J ]

� Train the model on the training subset to build a predictive function F̂ such that :

(yh,t)t∈ [W0:WL]
= F̂

(
(Tt)t∈[W0:WL]

)
+ ϵ

� Make the predictions on the test subset :

(ŷh,t)t∈[WL+1:WL+J ]
= F̂

(
(Tt)t∈[WL+1:WL+J ]

)
� Move the time window by advancing J time periods, repeat the process to make new

predictions

(ŷh,t)t∈[WL+1+J :WL+2J ]

� Repeat until the whole period has been covered.

By iterating over the whole dataset, we are able to make predictions past an initial training

window while avoiding any forward-looking biases. The model thus only use past data to

make computations and forecasts. Calibration for computations such as PCA or regressions

are executed on a rolling fashion, thus extending the validation sample to better assess the

ability of the model to perform on unseen data.

Employing a rolling window model for forecasting economic variables o�ers signi�cant ad-

vantages over traditional static train/test split methods, particularly in the dynamic context

of economic environments.

The rolling window approach better accommodates structural breaks and evolving eco-

nomic conditions that can signi�cantly a�ect model performance. Economic variables are in-

herently in�uenced by changes in policy, market conditions, and global economic events. A

static train/test methodology might train a model on historical data that no longer re�ects

current economic realities, leading to poor out-of-sample performance. In contrast, a rolling
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window model continuously updates both the training and testing datasets, allowing the model

to adapt and respond to new information as it becomes available. This dynamic updating is

crucial for maintaining the relevance and accuracy of the model predictions.

Secondly, this method enhances the robustness of the forecasting model by repeatedly test-

ing it across di�erent time periods. This iterative testing not only improves the generalizability

of the model across various market phases but also mitigates the risk of over�tting to a spe-

ci�c period's idiosyncratic features. In economic forecasting, where market regimes can shift

unpredictably, the ability of rolling models to integrate and learn from new data continuously

provides a clear edge.

Moreover, the rolling window approach naturally aligns with the �ow of economic data,

which is typically released at regular intervals (monthly, quarterly, etc.). This alignment allows

the model to incrementally re�ne its predictions, integrating the latest economic indicators and

thus consistently re�ning the forecast accuracy. In essence, the rolling window method provides

a �exible, adaptive modelling framework that is particularly well-suited to the �uid nature of

economic environments, ensuring that the predictions remain pertinent and are based on the

most current data. This methodological approach is especially valuable in economics, where

the landscape can change rapidly, and historical patterns may not always be reliable indicators

of future behaviours.

Eventually, we can modify the size of the rolling window depending on whether we want the

model to integrate more datapoints and generalize over several economic scenarios or be more

tailored to the economic conditions of the �last 20 years� for instance.

When it comes to the predictive model, we have chosen to work with the XGBoost (Extreme

Gradient Boosting) regressor which is a highly sophisticated machine learning model that has

proven to deliver strong results in many use cases. This model is particularly well-suited for

regression tasks where the underlying data and relationships between variables can be complex

and non-linear, thus adressing the observation in Flannery et al. (2002) [10]. The choice of

XGBoost over simpler models such as Ordinary Least Squares (OLS) regression is motivated by

several of its features and capabilities, particularly relevant when dealing with economic data

such as principal components (PCs) that exhibit non-stationarity and strong autocorrelation.

2.5.1 XGBoost Regression

XGBoost is an implementation of gradient boosting machines designed to be highly e�cient,

�exible, and portable. It operates by constructing an ensemble of weak decision tree learners in

a sequential manner. Each subsequent tree attempts to correct the errors made by the previous

ones in the ensemble. The model is built in the following way:

1. Objective Function

The objective function that XGBoost attempts to optimize consists of a loss function and
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a regularization term Ω, the latter being used to penalize the complexity of the model:

Obj (Θ) =
∑
i

L (yi, ŷi) +
∑
k

Ω (fk)

Where Θ denotes the parameters of the model, yi the observed values, ŷi the predictions,

and fk the individual trees.

2. Boosting

Boosting involves adding new models that solve for net errors left by the previous mod-

els. In XGBoost, this is achieved using a gradient descent algorithm on the loss function,

speci�cally tailored for tree-based learners. Each new tree is �tted on the negative gradi-

ents of the loss function, e�ectively reducing the residuals of previous trees.

3. Regularization

XGBoost incorporates both L1 and L2 regularization, which helps prevent over�tting�a

signi�cant advantage over standard boosting methods. This regularization is critical when

models are trained on data with noise, ensuring that the model does not learn the noise.

2.5.2 Advantages of using XGBoost

While OLS regressions - widely used for forecasting with economic variables - o�er simplicity and

interpretability, XGBoost excels in predictive accuracy, especially when dealing with nonlinear

relationships and high-dimensional data like principal components.

We found several advantages of using XGBoost over OLS to make predictions using eco-

nomic data. Firstly, XGBoost can handle non-stationary data, which is common in economic

datasets, especially in derived components like PCs from Principal Component Analysis (PCA).

OLS relies on strict assumptions of stationary predictors and independently and identically dis-

tributed errors (homoscedasticity), while XGBoost is robust to violations of these assumptions,

making it more adaptable to real-world data complexities. Then, in cases where PCs ex-

hibit strong autocorrelation, OLS may encounter mis-speci�cation issues and biased estimates,

whereas XGBoost, with its tree-based learners, can capture complex patterns such as lag e�ects

and nonlinear relationships, prioritizing predictive accuracy over inference. Also, XGBoost's

�exibility and predictive power enable it to model intricate nonlinear relationships and handle

various data irregularities including missing values and outliers, which are prevalent in eco-

nomic datasets. Lastly, XGBoost does not impose any speci�c distribution requirements on

the residuals, unlike OLS, which is advantageous in economic forecasting scenarios where error

terms may not adhere to normality due to external shocks or anomalies. Overall, XGBoost

o�ers a robust and powerful framework for regression with PCs in economic analysis.
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2.6 Signal Construction

2.6.1 Parameters

Using the described methodology, we build our signal in a rolling fashion with XGBoost Re-

gressor. Two parameters are of main interest for our model : the rolling window size and the

number of principal components used to make predictions.

The Size of the Rolling Window

This parameter is relevant because it is related to the memory of our model : How far

in the past should the model look back to learn patterns and make predictions for the future

? Economic environments evolve signi�cantly over time due to changes in policy, technology,

market structures, and global interactions. Patterns and relationships that held in the distant

past may no longer be applicable. For example, the economic environment of the 1970s and

1980s was characterized by issues like high in�ation and the oil crisis, which have been quite

di�erent from the challenges and economic landscape of the last 20 years. Of course, these

issues now echo particularly well since 2021.

Furthermore, economies undergo structural changes over time due to various factors includ-

ing technological advancements, regulatory changes, and shifts in consumer behavior. These

changes can render long-term historical data less informative for future predictions. For in-

stance, the digital revolution and globalization have transformed economic dynamics in ways

that data from 50 to 100 years ago could not anticipate. A shorter rolling window also has the

advantage of homogeneity. Shorter time windows tend to include data that is more homogeneous

in terms of economic policy, consumer behavior, and market conditions. This homogeneity can

simplify the modeling process and increase the accuracy of predictions, as the underlying eco-

nomic conditions are more uniform.

The Number of Principal Components

This parameter relates to balancing simplicity and capturing su�cient variability to make

accurate predictions. While later principal components (PCs) account for smaller variations

and may appear as noise, they can sometimes contain important information about the data's

structure that the �rst few components miss. This is especially valuable when economic phe-

nomena of interest are in�uenced by factors not captured by the dominant trends and cycles.

However, using more PCs can lead to over�tting issues, which can degrade the model's perfor-

mance on unseen data and potentially introduce noise into the model.

Using fewer PCs simpli�es the model, making it easier to interpret and understand. The �rst

few PCs often have a clear economic interpretation, such as re�ecting major economic trends

or cycles, which can be directly linked to underlying economic theories. These major economic

signals can be su�cient to predict the impact of the overall economy on the stock market.
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Therefore, while additional PCs might provide more nuanced insights, the risk of over�tting

and complexity must be carefully managed to maintain model robustness and predictive power.

We then construct several signals to determine the best parameters that will strike the

balance between accurate predictions and over�tting issues.

2.6.2 Measure of performance & signi�cance

We note ŷ the signal thus constructed, ignoring the horizon of predictions h for clarity :

ŷ = F̂ (P (X))

Where P (.) is the pre-processing function that transforms raw data into cyclical components

and then principal components. Our goal is to evaluate the information and predictive value

of this signal for market timing.

A widely used metric for assessing the strength of the signal is the information coe�cient

(IC), typically measured using Spearman's rank correlation. In �nancial analytics, particularly

in evaluating market-timing strategies, the IC plays a crucial role. It quanti�es the strength and

direction of the predictive relationship between a forecast and actual market returns. Utilizing

Spearman's rank correlation to compute the IC o�ers several advantages, making it a pertinent

measure for market-timing evaluation.

The IC, de�ned as the correlation between predicted and actual asset returns, indicates how

well a model's predictions align with subsequent outcomes. A higher IC suggests more consis-

tent alignment between predictions and actual returns, indicating a stronger predictive signal.

Unlike Pearson's correlation, which assumes linearity and normal data distribution, Spear-

man's correlation accommodates non-linear relationships and non-normally distributed data.

This �exibility is crucial in �nancial markets where data distributions often exhibit skewness

or contain outliers due to market anomalies or high volatility. By evaluating the rank-ordering

of data rather than actual values, Spearman's correlation assesses monotonic relationships,

whether linear or not, aligning well with the objectives of market-timing strategies.

The Spearman's rank correlation measure is :

r = 1− 6
∑

d2t
T (T 2 − 1)

, dt = Rank (yt)−Rank (ŷt)

Where dt is the di�erence between the two ranks of each observation.

To test the null hypothesis H0 that there is no correlation versus the alternative of a signi�-

cant correlation between our signal and market returns, we employ the correlation test statistic

and its associated p-value. Denoting Rα the rejection region associated with a test at level α

for H0 :

t =
r√

(1− r2) (T − 2)
, p-value = inf{α : t ∈ Rα}

In addition, we adopt an econometric approach to evaluate our signal and evaluate its predictive

power. One robust method is to perform an Ordinary Least Squares regression (OLS) enhanced
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by the Newey-West variance estimator :

yt = βŷt + ϵt

In this method, the slope coe�cient should ideally approximate 1, indicating a strong and direct

relationship between the signal and market returns. Additionally, this coe�cient should be sta-

tistically signi�cant, meaning a p-value lower than 0.05 (signi�cance at the 5% level). Financial

time series are often characterized by autocorrelation and heteroskedasticity� violating classic

OLS assumptions and leading to biased standard errors and unreliable hypothesis tests. The

Newey-West estimator addresses these issues by providing consistent standard errors, even in

the presence of autocorrelation and heteroskedasticity, making it particularly valuable in time

series analysis. This procedure constructs an estimate of the covariance matrix of the model

parameters that considers autocorrelation up to a �xed lag and potential unequal variances

across the data, enhancing reliability.

Furthermore, to gauge performance, we test whether the signal demonstrates predictive

ability in both favorable and adverse market conditions. Past research suggests that economic

indicators may forecast returns during bad times but not in good times. To test this, we estimate

a linear two-state predictive regression by including an indicator variable, as suggested by Boyd

et al. (2005) [4] :

yt = βbadχbadŷt + βgood (1− χbad) ŷt + ϵt

Where χbad take a value of 1 during recessions and 0 otherwise. Bad times are de�ned using

NBER's recession dates. Similarly, the coe�cients βbad,βgood should ideally approach 1 (and be

positive) with a p-value below 0.05.

3 Analysis

3.1 Data Analysis

3.1.1 Data description

For our analysis, we used the FRED-MD (Federal Reserve Economic Data - Monthly Database)

dataset from January 1959 to December 2023, with an in-sample period from 1959 to 2012 for

both the training period (1959-1967) and validation period (1967-2012). This database o�ers a

comprehensive historical perspective spanning 65 years of economic data observed on a monthly

basis and provides a holistic view of various aspects of the US economy.

The data analysis acknowledges several key characteristics of the FRED-MD dataset that

shape our analytical approach. Firstly, a signi�cant proportion of the data series exhibit non-

normality, which is a common feature in economic data. Then, the presence of trends in some or

all of the data series re�ects the long-term growth and evolution of the US economy. Therefore,

we have employed detrending techniques to facilitate accurate analysis. Finally, the prevalence

of non-stationarity, demonstrated by the failure of approximately 78% of the data to pass the
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Augmented Dickey�Fuller Stationarity test at the 10% level, highlights the need to transform

data using methods such as di�erencing or cyclical component extraction to prevent spurious

regressions. A sample of the time series used for our analysis can be visualised in Figure 1.

Figure 1: Visual of some macroeconomic time series indicators

The analysis of the correlation matrix reveals high correlation across our set of indicators.

One can visualize this observation in the correlation heatmap provided in the Appendix on

Figure 19. This is a classic observation for macroeconomic indicators for one country. High

correlation across predictors can reduce the e�cacy of several models and motivates the imple-

mentation of aggregation techniques to reduce the dimensionality of our dataset and provide

independent predictors. We thus use a Principal Component Analysis (PCA) to address colin-

earity issues, ensuring that our data analysis is both comprehensive and robust in examining

macroeconomic trends and relationships within the FRED-MD dataset.

3.1.2 Treatment : cyclical components and feature engineering

In our dataset, we employ several steps to enhance the quality and characteristics of our time

series data. Firstly, we utilise a one-year moving average detrending method, which allows us
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to extract the cyclical component from our data. This method enables us to isolate the cyclical

patterns from the overall trend, thereby facilitating a clearer analysis of cyclical �uctuations

observed in various economic indicators. Additionally, we standardise the data, thus ensuring

consistency and comparability across di�erent variables. This, in turn, allows us to provide

interpretations of our results that are more meaningful and reliable, thereby enhancing the

robustness of the analysis.

Moreover, we employ a winsorizing process at the 95% level, which addresses any potential

outliers in our dataset to enhance generalization to unseen data. This process involves capping

extreme values, thus mitigating the impact of any such outliers on our analysis. It also serves to

ensure the robustness of our results, given that the outliers are removed. Furthermore, we apply

an exponential smoothing �lter to improve the signal-to-noise ratio in our dataset, improving

the forecasting potential of our data.

In summary, these treatments serve to re�ne the properties of our time series data by

reducing skewness, noise, and extreme variance. As a result of these interventions, we observe

a notable increase in the level of stationarity across the dataset, with the proportion of non-

stationary series decreasing from 78% to 22%. This improvement in stationarity signi�es greater

stability and reliability of our data, laying a stronger foundation for our subsequent analyses

and modelling endeavours. The resulting cyclical components can be observed in Figure 2.

3.2 Principal Components

Across the research sample spanning from 1959 to 2012, 15 principal components can explain

roughly 90% of the cyclical components variance which is our target level of captured variance

(c.f. Appendix Figure 20). Beyond this level, it is likely that we are capturing more subtle

variations or noise that is less likely to drive the market.

3.2.1 Macroeconomic Interpretations

Upon analysing the factor loadings (Appendix, Figure 21) produced by the Principal Compo-

nent Analysis (PCA) on our dataset, we are able to interpret economically the relevant principal

components for our analysis. Although there is no clear grounds on how to interpret the factor

loading and the components, this interpretation gives more economic context to the variables

we employ for our prediction.

We identi�ed PC1 as an indicator for overall price levels in the economy. The inclusion

of various price indices, including PPI for crude materials, intermediate materials, �nished

consumer goods, and CPI, suggests that PC1 captures in�ation across di�erent stages of pro-

duction and consumption while PC4, PC6, PC12, and PC14 are linked to banking credit and

loan indicators.

Table 1 summarizes our interpretation of the principal components by observing the factor

loadings produced by the principal component analysis.

Interpreting the later principal components becomes increasingly challenging due to the dis-

persion of loadings across many variables. However, the interpretation of the initial principal
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Figure 2: Resulting cyclical component after pre-processing technique

components is relatively straightforward and reassuring. This indicates that our primary prin-

cipal components e�ectively capture signi�cant aspects of the overall economy, ensuring that

the essential economic signals are well-represented in our analysis.

3.2.2 Time series & distribution analysis of the principal components

Our analysis of the time series properties and distributional characteristics of the principal

components revealed that the majority of them are stationary, with only two out of 15 exhibit-

ing non-stationarity at the 10% level. This indicates that the principal components capture

underlying economic factors with relatively stable statistics over time, making them suitable

for time series analysis techniques. However, it's important to note that all principal compo-

nents exhibit strong levels of autocorrelation and partial autocorrelation, suggesting persistent

underlying patterns. This persistence can lead to issues in OLS models, potentially biasing

parameter estimates and undermining the validity of statistical inference.

Furthermore, our analysis reveals that the principal components are not normally dis-

tributed, exhibiting strong levels of kurtosis. This departure from normality suggests that

the distributions of the principal components are characterised by heavy tails and peakedness,
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Table 1: Economic Interpretation of PCs

PC id Interpretation Key Indicators
0 Aggregate Supply Production indexes, Labor market indi-

cators (e.g., Unemployment Rate)
1 Price Component Price indexes (PPI, CPI)
2 Housing Market Housing-related indicators (permits, in-

terest rates)
3 Business Activity and Employment Inventory-to-Sales Ratio, Orders (capital

and consumer goods), Employment and
Hours Worked indicators

4 Consumer Credit Consumer loans, Non revolving credit
5 Energy Prices and Stock Market Energy price indicators (Fuel Price, Oil

Price), S&P PE Ratio
6 Consumer Credit Consumer loan indicators (Consumer

Loans, Non-revolving Credit)
7 Foreign Exchange (FX) US FX indices (Trade-Weighted, ex-

change rates)
8 Interest Rates Interest rate spreads (CP-FFR, etc.)
9 Money Stock Securities in Bank Credit
10 Money Supply and Stock Market Money supply indicators, S&P PE Ratio
11 International Linkages with Financial

Health
Canada FX rate, S&P Dividend Yield,
S&P Industrials Index, Total Reserves,
Non-borrowed Reserves

12 Banking System and Housing Securities in Bank Credit, US FX rate,
Real Estate Loans

13 Stock Market and Consumer Sentiment Stock Market indicator, Consumer Sen-
timent Index

14 Credit and Business Loans Securities in Bank Credit, Commer-
cial and Industrial Loans, Total Non-
revolving Credit

indicating non-Gaussian behaviour. The non-normal distribution of the principal components

has implications for the choice of statistical methods and inference procedures, highlighting

the need for robust modelling techniques that can accommodate non-Gaussian data. Figure 3

summarizes the time series analysis for the �rst principal component. This supports the use of

alternative non-linear models such as XGBoost regression.

Interestingly, we observe that the 15th principal component displays lower levels of autocor-

relation and demonstrates more normal distributional characteristics with lower kurtosis and

skewness. This pattern indicates that the more distant principal components may be capturing

more noise, hence the convergence towards a Gaussian distribution.

3.3 Signal Analysis

The above analysis enables us to perform the preprocessing phase of the model. We are able

to extract cyclical components and aggregate them into principal components, providing the
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Figure 3: Correlogram & time series analysis for this �rst PC

predictors for our model. We can now run the model and adjust the parameters to build our

macroeconomic signal.

3.3.1 Parameters selection

We need to select the two main parameters discussed earlier for this model, namely the size of

the rolling window (which in�uence the memory of the model) and the number of components

used to make predictions.

Table 2 shows performance measures of signals built for di�erent levels of the parameters

rolling widow size (W) and number of principal components (PC), for a one year horizon excess

return target. The analysis of the result highlights the signi�cance of meticulously selecting

parameters in predictive modelling. While larger rolling window sizes may provide more com-

prehensive data coverage, they may also introduce biases and reduce the model's predictive

power. Similarly, while increasing the number of PCs can enhance predictive performance up

to a certain point, an excessive number of PCs may lead to over�tting and diminish the model's

ability to generalise to new data. Consequently, a balanced approach to parameter selection is

essential for optimizing the predictive accuracy and robustness of the model.

The analysis of the table reveals that the best performing combination is achieved through

a window of 240 months (20 years) and 9 principal components. This is the combination of

parameters we will thus use for the out of sample and robustness analysis.

Figure 4 is the representative graph of our macroeconomic signal juxtaposed with the 1-

year future excess return over the in-sample validation period, spanning from 1967 to 2012,

thus eliminating the training period. It is notable that both curves exhibit in general similar

patterns, often mirroring each other's movements and occasionally overlapping. This alignment

suggests a relationship between the identi�ed macroeconomic signal and subsequent market

performance, as evidenced by their synchronised �uctuations. The shading, which denotes
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Table 2: Statistical Data for Di�erent Window Sizes and Principal Components, h=12 (1 year)

W = 120 W = 240 W = 360

PCs IC R2 β IC R2 β IC R2 β

1 PC 0.18∗∗∗ 0.02 0.16∗ 0.12∗∗∗ 0.01 0.17 −0.00 0.00 0.06
2 PCs 0.33∗∗∗ 0.08∗∗∗ 0.35∗∗∗ 0.17 0.02 0.21∗∗∗ 0.21∗∗∗ 0.04∗∗∗ 0.29∗∗∗

4 PCs 0.28∗∗∗ 0.09∗∗∗ 0.36∗∗∗ 0.34∗∗∗ 0.11∗∗∗ 0.44∗∗∗ 0.30∗∗∗ 0.09∗∗∗ 0.44∗∗∗

6 PCs 0.25∗∗∗ 0.06∗∗ 0.31∗∗∗ 0.26∗∗∗ 0.06∗∗∗ 0.33∗∗∗ 0.20∗∗∗ 0.03∗∗ 0.21∗∗

9 PCs 0.24∗∗∗ 0.08∗∗∗ 0.43∗∗∗ 0.32∗∗∗ 0.11∗∗∗ 0.49∗∗∗ 0.16∗∗∗ 0.03 0.27∗

12 PCs 0.25∗∗∗ 0.09∗∗∗ 0.44∗∗∗ 0.25∗∗∗ 0.09∗∗∗ 0.49∗∗∗ 0.14∗∗∗ 0.03 0.29∗

15 PCs 0.20∗∗∗ 0.06∗∗∗ 0.35∗∗∗ 0.24∗∗∗ 0.10∗∗ 0.49∗ 0.09∗∗ 0.04∗∗ 0.38∗∗

20 PCs 0.24∗∗∗ 0.08∗∗∗ 0.40∗∗∗ 0.24∗∗∗ 0.09∗∗∗ 0.51∗∗∗ 0.17∗∗∗ 0.07∗∗ 0.52∗∗

Figure 4: Macroeconomic Signal and 1-year Excess Return, Validation Period (1967-2012)

NBER-dated recessions, provides crucial contextualisation, highlighting periods of economic

downturns and their potential impact on the observed dynamics.

3.3.2 Signal performance during good and bad times

To evaluate the predictive power of our signal during di�erent market conditions, we have run

the two-state predictive regression. We found that the signal has a statistically signi�cant

predictive power in good times and bad times. The performance of our signal in good and bad

times is summarized in Table 3.

Table 3: Signal analysis during good and bad times

R2 = 12.3% Coe�cient p-value

(1− χbad)yt βgood = 0.432 0.000***
χbadyt βbad = 0.8379 0.028**

Previous studies have highlighted the signi�cant in�uence of market sentiment and volatility

on the e�ectiveness of predictive models. In particular, signals are often observed to exhibit
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stronger predictive power during periods of market stress (Liu and Kemp, 2019 [15]). Our

signal seems to work well in both conditions, which plays in favor of its robustness. This can

be explained by the wide range of variables taken into account into building it while previous

research often focus on a single indicator.

3.3.3 Signal stability over the prediction period

To assess the reliability of our signal's predictions across di�erent periods, we analysed the

variation in information coe�cients (IC) over the prediction timeline. In fact, even the most

robust signals will not be 100% reliable due to the unpredictable nature of markets. However, it

is crucial for informed decision-making to be able to discern when the signal is underperforming.

Figure 5: Macroeconomic Signal IC variations

Figure 5 displays the �ve-year moving average of the signal's IC during the predictive

period. As illustrated, we can assume that the signal exhibits notable reliability before 1990,

characterised by a consistent performance. However, a downturn is evident between 1990 and

1995, marked by a �ve-year period of negative performance. Subsequent to this, intermittent

negative periods emerged in 2000, 2005, and 2009, indicating periods of weaker signal reliability

4 Robustness checks

A crucial aspect of any predictive model is its ability to perform well on unseen data. To address

this, we compute the prediction using the same signal construction process by including the out

of sample period of 2012-2024, which was entirely excluded from the model calibration process.

This ensures the model is not simply memorizing patterns in the training data but can identify

genuine relationships between economic factors (PCs) and stock market returns.

In the robustness check, we �rst conduct the same tests of predictive power and sta-

tistical signi�cance as we did before. The out-of-sample analysis yield impressive results

(IC = 0.290∗∗∗, Correlation= 0.350, R2 = 0.381∗∗∗, β = 1.154∗∗∗) that are statistically sig-

ni�cant and even exceed the in-sample performance. While the relatively short out-of-sample
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period might contribute to this stronger performance, it nonetheless demonstrates that the

model's ability to predict returns generalizes well to unseen data. This creates con�dence in

the model's e�ectiveness for future predictions.

Figure 6 shows that the additional out-of-sample signal (delimitated by the black hori-

zontal dotted line) still follows the same pattern as the 1-year forecast return but with more

discrepancies.

Figure 6: Macroeconomic Signal and 1-year Excess Return

In addition, we check the predictability of the signal in both good and bad states, although

it makes less sense given the small period of recession that occurred only during the covid

pandemic. Again, the signal performs well in both conditions and is signi�cant. Results are

summarized in Tabe 4.

Table 4: Signal analysis during good and bad times, out-of-sample

R2 = 40.9% Coe�cient p-value

(1− χbad)yt βgood = 1.06 0.00∗∗∗

χbadyt βbad = 2.17 0.00∗∗∗

Furthermore, we compute the variations in IC using a �ve-year moving average. We can

observe in Figure 7 that the signal has been particularly strong in the out-of-sample period.

5 Complementary Analysis

5.1 Signal Performance for Several Time Horizons

To further assess the model's robustness, we investigated its e�ectiveness for predicting returns

across di�erent time horizons: 3 months, 6 months, 1 year, and 2 years. A 1-year horizon

emerged as a promising balance, o�ering su�cient time for the signal to capture slower economic

�uctuations while remaining valuable for investment decisions. Table 5 summarizes the results
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Figure 7: Macroeconomic Signal IC variation, 1967-2023

we obtain for several time horizons for the same parameters con�guration already selected

(9 PCs, 240 months window). Its analysis revealed interesting insights. While the signal

performed well overall, it exhibited some nuances across timeframes. For shorter horizons (3

months), the ability to predict good market periods was weaker, although the signal remained

strong at predicting bad times. This is a common challenge in economic signal design for market

timing. Conversely, the 2-year horizon yielded excellent results, unsurprising considering the

long-term in�uence of economic factors on the market. However, a 2-year timeframe might be

less practical for investment strategies, reducing the number of independent bets a portfolio

manager can make. The analysis highlights a key trade-o�: shorter time horizons o�er more

frequent opportunities to leverage the signal but might be noisier for identifying positive market

trends. In fact, this trade-o� between the signal's strength and the number of bets that can be

made using this signal is illustrated by Treynor & Black's (1973) Information ratio [23] :

IR = IC ×
√
BR

Where the breadth BR represents the number of independent bet a portfolio manager can

make.

5.2 Signal Performance across industry portfolios

In this section, we explored the applicability of the signal beyond overall market returns by

investigating its e�ectiveness in timing industry performance. This analysis aimed to deter-

mine if the signal could be used to manage a portfolio of industries based on their forecasted

performance. This would reinforce the signal's practical use for investment management by

increasing the number of independent investment decisions a portfolio manager could make

based on the signal. Using an investment horizon h in months, and 10 industry portfolios, we

can make BR = 10× 12
h
independent bets per year.

To conduct this investigation, we import 10 industry portfolio returns from Ken French's

online library [11] and evaluate the signal's predictive power for industry-speci�c log-excess
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Table 5: Statistical Analysis for Various Horizons and Samples

Validation Set: 1968-2012

Horizon h=3 h=6 h=12 h=24

IC 0.256∗∗∗ 0.294∗∗∗ 0.322∗∗∗ 0.306∗∗∗

R2 4.7% 7.1% 11.3% 8.1%
β 0.360∗∗∗ 0.414∗∗∗ 0.494∗∗∗ 0.352∗∗

βbad 0.259∗∗∗ 0.303∗∗∗ 0.838∗∗ 0.337∗∗∗

βgood 0.769∗∗ 1.06∗∗∗ 0.432∗∗∗ 0.494∗∗∗

Out of Sample: 2012-2024

Horizon h=3 h=6 h=12 h=24

IC 0.209∗∗ 0.132 0.290∗∗∗ 0.35 ∗ ∗∗
R2 5.3% 9.7% 38.1% 51.9%
β 0.385∗ 0.618∗∗ 1.154∗∗∗ 0.962∗∗

βbad 1.942∗∗∗ 2.32∗∗∗ 2.17∗∗∗ 0.925∗∗∗

βgood 0.306 0.507∗ 1.06∗∗∗ 1.427∗∗∗

returns across di�erent time horizons.

Table 6: Performance Across Various Industry Sectors for Di�erent Time Horizons

NoDur Durbl Manuf Energy HiTec Telcm Shops Hlth Utils Other

k=3 (3-months horizon)
IC 0.29∗∗∗ 0.26∗∗∗ 0.32∗∗∗ 0.11∗∗∗ 0.34∗∗∗ 0.20∗∗∗ 0.29∗∗∗ 0.31∗∗∗ 0.24∗∗∗ 0.34∗∗∗

R2 10.6% 8.9% 10.1% 1.6% 9.8% 7.4% 8.3% 12.7% 9.9% 13.8%
β 0.46∗∗∗ 0.55∗∗∗ 0.45∗∗∗ 0.22∗∗ 0.44∗∗∗ 0.38∗∗∗ 0.42∗∗∗ 0.45∗∗∗ 0.41∗∗∗ 0.57∗∗∗

k=12 (1-year horizon)
IC 0.26∗∗∗ 0.22∗∗∗ 0.29∗∗∗ 0.16∗∗∗ 0.37∗∗∗ 0.18∗∗∗ 0.26∗∗∗ 0.27∗∗∗ 0.28∗∗∗ 0.18∗∗∗

R2 19.7% 11.9% 13.5% 6.6% 16.8% 8.2% 18.7% 18.1% 13.3% 9.9%
β 0.60∗∗∗ 0.64∗∗∗ 0.52∗∗∗ 0.39∗∗∗ 0.68∗∗∗ 0.39∗∗∗ 0.66∗∗∗ 0.56∗∗∗ 0.53∗∗∗ 0.46∗∗∗

k=24 (2-years horizon)
IC 0.43∗∗∗ 0.15∗∗∗ 0.32∗∗∗ 0.21∗∗∗ 0.39∗∗∗ 0.29∗∗∗ 0.31∗∗∗ 0.37∗∗∗ 0.32∗∗∗ 0.32∗∗∗

R2 47% 9.6% 29.4% 16.1% 15.6% 15.3% 33.6% 40.1% 24.6% 21.8%
β 0.91∗∗∗ 0.40∗∗∗ 0.73∗∗∗ 0.48∗∗∗ 0.44∗∗∗ 0.72∗∗∗ 0.81∗∗∗ 0.64∗∗∗ 0.56∗∗∗ 0.56∗∗∗

Our results from Table 6 illustrate well the concept of �Fundamental Law of Active Manage-

ment� by Grinold & Kahn [12], which suggests that increasing the number of independent bets

(industries) can lead to better portfolio performance if the best bets have positive information

coe�cients (IC). As the investment horizon shortens, market returns become noisier from an

economic predictability standpoint, leading to lower IC values.

The results revealed a trade-o� between predictive ability and the number of potential bets.

By increasing the horizon from 3 months to 2 years, the average IC across industries more

than doubled (0.09 to 0.21). However, this also reduced the available bets by a factor of 4,

28



potentially impacting the information ratio (a measure of risk-adjusted return).

Furthermore, the analysis identi�ed signi�cant di�erences in predictability across industries.

Certain sectors, like HiTech and Non-Durables, exhibited much stronger signal performance

compared to others. This disparity can be attributed to the inherent characteristics of these

industries. Defensive industries like Non-Durables tend to have performances highly sensitive

to economic �uctuations, as they tend to be favored by investors during bad times, making

them more susceptible to economic signal predictions. Similarly, growth-oriented industries

like HiTech often rely on future cash �ows, which are heavily discounted by the prevailing

interest rates. Since interest rates are in�uenced by economic factors, these industries become

more responsive to economic signals.

The variation of information coe�cients for the 1 year horizon signal relative to all 10

industries can be observed in Figure 8. Overall, the di�erent signals evolve in a consistent

pattern. Table 7 illustrates the trade-o� between breadth and information for the di�erent

time horizons. While the 3 months horizon has the lowest cross-sectional correlation, it could

prove the most helpful in practice for portfolio managers as it has the highest information ratio.

Figure 8: Macroeconomic Signal IC variation for 10 industries portfolios, 1967-2023

Table 7: Information Ratio, XS Correlation and Breadth for di�erent time horizons

XS Correlation Breadth Information Ratio

k=3 (3-months horizon) 0.090 40 0.567
k=6 (6-months horizon) 0.098 20 0.412
k=12 (1-year horizon) 0.170 10 0.432
k=24 (2-years horizon) 0.212 5 0.468
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6 Performance relative to a single variable signal

6.1 The cyclical consumption signal

Atanasov et al. (n.d.) [2] introduced a consumption-based variable - the cyclical consumption

- to predict stock returns. They demonstrate the predictive power of cyclical consumption

for the same excess return we have used for our study. To build their signal, the authors

extract the cyclical component of the aggregate seasonally adjusted consumption expenditures

on nondurables and services from the National Income and Product Accounts (NIPA) built

by the Bureau of Economic Analysis. In their paper, they prove that cyclical consumption's

performance is not con�ned to bad times and do better than many popular forecasting variables.

Our macroeconomic signal is comparable to the cyclical consumption signal in the sense

that it extracts the cyclical component of macroeconomic variables (like consumption) before

aggregating them using a principal component analysis. However, our signal and study present

signi�cant departures from the authors' methodology. First, we consider a di�erent cyclical

component extraction methodology as we eliminate the trend component by substracting the

moving average to the log-transformed variables. Secondly, we aggregate several macroeconomic

indicators while the authors focus on a single variable. Additionally, we de�ne our signal as the

point-in-time predictions of the stock market excess-returns resulting from our rolling model,

while the authors directly employ the cyclical component of consumption as their signal. The

authors' approach has the advantage of being very simple and transparent, but at the expense

of lower comparability with excess returns, as can be observed in Figure 9.

Figure 9: Macroeconomic signal vs Consumption signal vs Excess Return, 1967-2023

It is noteworthy that the cyclical consumption signal is slower than the macroeconomic

signal (FRED-MD signal) as it moves cyclically over long periods of times, while excess returns

vary over shorter periods. The amplitude of variations also do not match these of excess

returns. Overall, the cyclical consumption signal built by the authors are less comparable to

excess returns.

We can observe in Figure 10 the Information Coe�cient (IC) variations from the negative
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value of the cyclical consumption variable that we have replicated from the authors' paper. The

signal performs overall very well, exhibiting opposite variations as the market excess returns,

which veri�es the authors observation that "future expected stock returns are high (low) when

aggregate consumption falls (rises) relative to its trend". Interestingly, the consumption signal

also exhibits the same weakness as our macroeconomic signal between 1990 and 1995.

Figure 10: Opposite of cyclical consumption's IC relative to excess market returns, 1967-2023

6.2 Comparison of performance

To compare the relative performance of our signal (FRED-MD signal) versus the cyclical con-

sumption signal, we run the same regression and correlation analysis that we used so far. The

results are summarized in Table 8. We used quarterly data since the consumption original data

is quarterly released.

Table 8: Comparison of Statistical Measures for Consumption and FRED-MD Signals

Consumption Signal FRED-MD Signal

IC 0.224∗∗∗ 0.409∗∗∗

R2 5.5% 17.9%
β −1.10∗∗∗ 0.66∗∗∗

βgood −1.11∗∗∗ 0.60∗∗∗

βbad -1.29 1.00∗∗∗

We can observe that the macroeconomic aggregate signal we have built performs better on

all counts. This is not surprising given that we aggregate more than a hundred macroeconomic

variables while the cyclical consumption signal is based only on consumption. In the comparable

period (1967 - 2023) we note that the consumption signal is not statistically signi�cant in bad

times, while the macroeconomic signal is. Nonetheless, the performance of the consumption

signal is strong given it is based on a single variable.
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6.3 Additivity

When comparing signals it is interesting to study how they perform together. This refers to

the concept of additivity whereby several signals can be combined to produce a stronger signal.

Signals have high chances to be additive when they cover di�erent datasets and are built using

di�erent methodologies, thus producing less correlated outputs. The Pearson and Spearman

correlation between both signals is respectively 2.1% and 6.5% which is relatively low and

bodes well for additivity properties. To test the addtivity of the cyclical consumption with our

macroeconomic signal, we can build the mean signal or include both signals as predictors in a

multi-dimensional regression.

6.3.1 Multi-dimensional regression

The multi-dimensional regression including both the FRED-MD and Consumption signal pro-

vide the results summarized in Table 9.

Table 9: Additivity Analysis for the multi-dimensional model

Model & Signal Coe�cient p-value

Simple Model (R-square = 23.7%)

Consumption Signal β1 = −1.14 0.007∗∗∗

FRED-MD Signal β2 = 0.66 0.000∗∗∗

Two States Model (R-square = 25.5%)

Consumption Signal Good Times β4 = −1.04 0.015∗∗

Consumption Signal Bad Times β5 = −1.83 0.007∗∗∗

FRED-MD Good Times β6 = 0.58 0.000∗∗∗

FRED-MD Bad Times β7 = 1.14 0.006∗∗∗

These results provide evidence that there is additivity between both signals as the presence

of both signals in the regression signi�cantly increases the power of the model. We also observe

that signals are statistically signi�cant in all states (good and bad times) which supports the

relevance of both signals.

6.3.2 Average signal

Another way to test the additivity of both signals is to consider a mean signal, thus aggregating

the information contained in both signals in a simple manner. Note that this method is similar

to the multi-dimensional regression model except it is more restrictive in the way the model

sets the coe�cient since there remain only one dimension. We obtain the results summarized

in Table 10.

This mean signal also demonstrates the additivity between both signals and present a slightly

stronger performance than the previous method. Overall, this additivity between both signals

is very auspicious as it enables to build a stronger signal and aggregate di�erent sources of
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Table 10: Additivity Analysis for the aggregate signal

Coe�cient p-value

Simple Model (R-square = 24.2%)
Mean Signal β1 = 0.723 0.000***

Two States Model (R-square = 25.8%)
Mean Signal Good Times β4 = 0.65 0.000***

Mean Signal Bad Times β5 = 1.18 0.002***

information together. It also has the advantage of employing a di�erent methodology for

building a consumption signal which can be more tailored to the speci�cities of consumption

while employing a more general method to all indicators contained in the FRED-MD database.

7 An alternative aggregation method : Di�usion Indexes

Di�usion indexes are commonly used by many economic institutions to aggregate and forecast

economic data through leading indicators. For instance, The Conference Board in the United

States employs di�usion indexes extensively in its composite indexes, such as the Leading Eco-

nomic Index (LEI), which aggregates various economic indicators to forecast economic activity.

Similarly, other organizations, such as purchasing managers' associations in various countries,

use di�usion indexes to gauge economic conditions across manufacturing and service sectors

[5].

Di�usion indexes serve as an alternative to more complex methods like Principal Component

Analysis (PCA) when it comes to aggregating information from a pre-formed cluster of indica-

tors. Unlike PCA, which reduces data dimensionality by transforming correlated variables into

a smaller number of uncorrelated variables, di�usion indexes typically measure the proportion

of indicators that are moving in a pattern consistent with the overall index. This method can

be more intuitive and simpler to interpret, particularly when the indicators are already grouped

logically or thematically. Analysts often rely on these di�usion indexes to provide a measure

of the breadth of the change in a composite index.

However, there are advantages and drawbacks to using di�usion indexes. One major advan-

tage is their simplicity and ease of interpretation, as they provide a straightforward percentage

of indicators showing improvement. This can be particularly useful for policymakers and ana-

lysts looking for quick insights into economic trends. On the downside, di�usion indexes may

oversimplify complex dynamics because they do not account for the magnitude of changes in

the underlying data, only the direction. Additionally, the choice and weighting of indicators

in a di�usion index can signi�cantly a�ect its outputs, potentially introducing bias or overem-

phasizing certain sectors or variables. This contrasts with PCA, which inherently considers the

variance and correlation structure of the data to determine the principal components.
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7.1 Choosing the index components

We use the eight groups of macroeconomic indicators derived from the framework established by

Ludvigson and Ng (2009) [16]. In their paper, the authors sought to improve the predictability

of bond risk premia using macroeconomic factors derived from the same dataset. Using prior

information, they organized 131 monthly macroeconomic time series into eight coherent groups,

aiming at simplying the complexity inherent in such a vast dataset while retaining the essential

economic signals. The initiative came from the observation that principal component analysis

provides factors that are di�cult to interpret. Thus, they organized the dataset into 8 clusters

before building latent factor for each macroeconomic cluster using a factor augmented regression

(FAR) technique. The grouping helps isolate di�erent facets of the macroeconomic environment,

ensuring that signi�cant but distinct economic activities are adequately represented in the

analysis. The resulting clusters refer to (1) Output and Income, (2) Labor Market, (3) Housing

Market, (4) Consumption and Orders, (5) Prices and In�ation, (6) Money and Credit, (7)

Interest Rates and Spread, (8) Stock Market (see Appendix in Table 15 to Table

Ludvigson and Ng successfully demonstrated that these eight groups could be used to con-

struct factors with signi�cant predictive power for bond risk premia. By leveraging the economic

relevance of these clusters, the authors were able to enhance the interpretability and robustness

of their factor models. The factors derived from these groups showed strong correlations with

economic activity and provided valuable insights into the dynamics of �nancial markets.

We �nd this analysis useful for our research as it incorporates macroeconomic insights

into our quantitative analysis. The grouping is based on established economic theory and

empirical �ndings, providing a solid foundation for the analysis. This enhances the credibility

and relevance of the results, making them more interpretable and actionable for investors and

policymakers.

7.2 Computing the Di�usion Indexes

We depart signi�cantly from Ludvigson and Ng as well as follow-up research on the FRED-

MD 8 groups such as Michael W. McCracken and Serena Ng [18] to build our factor di�usion

indexes. The authors choose to smooth-out high frequency variations and emphasize low-

frequency trends from the underlying components by constructing di�usion indexes based on

partial sums : for cluster k, DIk = 1
Nk

∑Nk

i=1 Fi,t, Fit =
∑t

j=1 fij, where fij is the value of the

i-th component at time j of cluster k, after the component is made stationary. This process

e�ectively smoothes out high-frequency noise present in the original variables and highlights

the low-frequency trends by accumulating the e�ects of the common factors over time. We

�nd this method to be less e�ective for our methodology for several reasons. First, the authors

apply the partial sum to series made stationary using a di�erentiation method whereas we have

chosen to extract the cyclical component of the macroeconomic indicators. While the method

e�ectively reduces the noise of di�erentiated time series, there is no use for cyclical components

which are far less noisy. Secondly, we do not wish to focus on lower frequency variations with
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cyclical components as they are designed to capture the relevant variation frequency of economic

indicators in regard to market �uctuation. Instead, we chose a simpler framework.

We computed the Di�usion Indexes with a methodology similar to the Conference Board's

method to track the growth of the 10 constituents of its Leading Economic Indicator (LEI).

First, we employ a classi�cation system to categorize the underlying economic indicators within

each cluster. Each indicator in a cluster is assessed for its monthly change. If the change exceeds

0.05%, a value of 1 is assigned, indicating a positive movement. A change less than 0.05%

receives a value of 0.5, signifying a neutral change and indicators with a decrease exceeding

0.05% are assigned a value of 0, representing a negative movement. Then, these values are

averaged across all component indicators for each economic clusters.

For all clusters Kk = (x1, . . . , xNk
), we compute its di�usion index (DIk) :

DIk =
1

Nk

Nk∑
i=1

[
1× I

(
∆xi

xi

> 0.0005

)
+ 0.5× I

(∣∣∣∣∆xi

xi

∣∣∣∣ < 0.0005

)]

Di�usion indexes can be susceptible to noise. To mitigate this, we apply an additional smooth-

ing �lter before utilizing the DI in our predictions. Fortunately, di�usion indexes are naturally

scaled between 0 and 100, eliminating the need for further standardization or clipping.

Note that we build this signal on the same basis as the rolling PCA methodology as we

work with the cyclical components of our economic indicators.

7.3 Di�usion Index and Macroeconomics clusters

We use the macroeconomic clusters discussed earlier to conduct a �rst investigation on which

component of the economy are the most relevant to predicting market returns. To do so, we

build di�usion indexes for each clusters which are a good approximation of the �uctuation

dynamics of the variables contained in each cluster (supposing they are positively correlated).

Figure 11 provides insights into the factors in�uencing stock market performance. Among

our selected clusters, Housing, Money & Credit, Labor Market and Interest rates & FX provide

di�usion indexes that exhibit a statistically signi�cant linear relationship at the 10% level

in regards to excess returns. This can help identify which clusters contain leading variables

which are likely to help forecast excess returns. This prior analysis does not guarantee better

performance for these clusters however as it merely identify simple linear relationship across

the whole sample spanning from 1959 to 2012. The model we employ will likely identify more

complex non-linear relationships that can exist between di�usion indexes and excess returns.

This is all the more important that di�usion indexes are not built using a linear transformation.

Di�usion indexes have slightly better properties than our principal components. In fact,

they are all stationary at the 1% level and have a closer resemblance to a normal distribution.

However, di�usion indexes still exhibit characteristics like high autocorrelation and partial

correlation , similar to the PCA-derived components. This can be observed in Figure 12

containing the time series analysis of the Labor Market Di�usion Index.
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Figure 11: Regression analysis of excess return target versus di�usion indexes

7.4 Signal Construction

We can directly use our di�usion index as predictors with the XGBoost rolling model. Com-

pared to the analysis with the principal components, which involved parameter selection for

both the number of components and the rolling window size, di�usion indexes only require

optimization of a single parameter, namely the length of the rolling window.

It's important to note that since principal components and di�usion indexes capture eco-

nomic information di�erently, the optimal rolling window size for each approach might di�er as

well. To determine the optimal window size for the di�usion index signal, we evaluated various

options using the validation sample spanning from 1967 to 2012. The results of this analysis

are summarized in Table 11.

Table 11: Signal Performance over di�erent window sizes

W = 120 W = 240 W = 360 W = 480

IC = 0.193*** IC = 0.292*** IC = 0.384*** IC = 0.319***
R2 = 3.7% R2 = 7.5% R2 = 11.0% R2 = 7.7%
β = 0.259** β = 0.419*** β = 0.501*** β = 0.434***

Our analysis revealed that the optimal rolling window size for the di�usion index signal

is 10 years longer compared to the window identi�ed for the PCA-based signal. This di�er-

ence suggests that di�usion indexes might require a longer window to capture the underlying

economic dynamics relevant for predicting stock market returns.

In addition, we test the predictive power of the signal in good and bad times, results are

summarized in Table 12. Encouragingly, the di�usion index signal exhibited strong predictive

power in both good and bad market periods. It demonstrated high statistical signi�cance and
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Figure 12: Labor Market Di�usion Index

a relatively high level of predictive ability across market conditions. This suggests the signal's

e�ectiveness in identifying potential opportunities and risks, regardless of the overall market

direction.

Table 12: Signal analysis during good and bad times, out-of-sample

R2 = 15.2% Coe�cient p-value

(1− χbad)yt βgood = 0.384 0.00∗∗∗

χbadyt βbad = 1.316 0.00∗∗∗

7.5 Signal Robustness

We evaluate the robustness of the economic signal by performing the out-of-sample test. The

di�usion index signal demonstrates a strong out-of-sample performance that are statistically

signi�cant with IC= 0.414∗∗∗, Correlation= 0.325, R2 = 0.442∗∗∗, β = 1.114∗∗∗.

By comparing the out-of-sample performance of both signal construction methods (PC and

di�usion indexes), we found that the di�usion index approach exhibits a slightly higher IC

and R-squared. This suggests that di�usion indexes might be more e�ective in capturing the

economic relationships relevant for predicting future stock market returns.

While the di�usion index signal demonstrates stronger out-of-sample performance, a closer

look reveals some interesting nuances. The signal built upon di�usion indexes can be observed

in Figure 13. Compared to the PCA signal, the di�usion index signal exhibits slightly higher

volatility. However, it compensates by performing better during the 1990-1995 period, which

was a weak spot for the PCA signal. This suggests the di�usion index might be more adaptable

to di�erent market conditions. Despite its overall strength, the di�usion index signal does

appear somewhat noisier on average.
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Figure 13: Macroeconomic DI signal vs 1-year horizon excess return

In addition, similar to the PCA signal, the di�usion index signal maintains its robustness

across good and bad market periods, as shown in Table 13. This reinforces the signal's ef-

fectiveness in identifying potential opportunities and risks regardless of the prevailing market

trend.

Table 13: Di�usion Indexes Signal analysis during good and bad times, out-of-sample

R2 = 48.8% Coe�cient p-value

(1− χbad)yt βgood = 1.041 0.00∗∗∗

χbadyt βbad = 2.900 0.00∗∗∗

Furthermore, an analysis of the IC curve on Figure 14 provides further evidence of the

signal's robustness. The curve exhibits a highly favorable pattern with minimal regions of

weakness. This indicates that the signal has consistent predictive power across a broad spectrum

of market conditions, solidifying its overall robustness.

Figure 14: IC curve of the Di�usion Index, full sample

While the di�usion index signal demonstrates strong overall performance, it exhibits a key
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di�erence compared to the principal component signal: its sensitivity to the time horizon for

return predictions.

Table 14: Di�erent time horizons results for the di�usion index signal, full sample 1967-2023

h=3 h=6 h=12 h=24

IC 0.073 0.141 0.415∗∗∗ 0.292∗∗∗

R2 0.7% 2.2% 14.5% 8.5%
β 0.163 0.246∗∗ 0.591∗∗∗ 0.498∗∗∗

βbad 0.092 0.402 1.389∗∗∗ 0.885∗∗∗

βgood 0.181∗∗ 0.227∗∗∗ 0.483∗∗∗ 0.424∗∗∗

As shown in Table 14, the di�usion index signal appears less robust than the PCA signal

when the prediction horizon is adjusted. This suggests that di�usion indexes might be better

suited for longer timeframes, such as one year or more. This result makes sense from an

economic point of view because di�usion indexes are less in�uenced by strong variations as

the principal components. Indeed, variations are only taken into account by the proportion of

indicators moving into one direction, whereas principal components also take into account the

magnitude of the variation.

For shorter time horizons, market returns can be more susceptible to short-term �uctua-

tions and noise. Di�usion indexes, with their focus on directional changes without considering

magnitude, might be less e�ective at �ltering out this noise. Principal components, by incor-

porating both direction and magnitude, might be better equipped to handle such short-term

variations.

8 Performance attribution

Now that we have built macroeconomic signals to forecast stock market excess returns, one

�nal note is to take a look at the most informative variables. To do so, we can analyse the

feature performance of our set of predictors.

8.1 Feature Importance Computation

Our models leverage the XGBoost architecture, which relies on decision trees for making pre-

dictions. Decision trees make predictions by iteratively splitting the data depending on the

value of a speci�c feature at each node. To measure the importance of a feature, we use a

combination of two common metrics :

Gain : Measures the relative contribution of the corresponding feature to the model by calcu-

lating the improvement in accuracy brought by a feature to the branches it is on. For a

regression tree, the gain from a particular split is the di�erence in MSE before and after

the split. Given a node S that splits into two nodes S1 and S2, the gain G from the split
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is :

G = MSE(S)−
(n1

n
MSE(S1) +

n2

n
MSE(S2)

)
where n, n1, n2 are the numbers of samples in S, S1 and S2, MSE is the common mean

square error loss measure.

Frequency or Weight : Re�ects the number of times a feature is used to make splits across

all trees, regardless of the depth or the purity gain. To prevent over�tting issues, the

depth of trees used for prediction is capped, making frequency a more relevant measure.

Frequency =
Number of splits using feature

Total splits all features

We combine these measure to have a broader picture of the performance of our features. To do

so, we start by normalizing the scores obtained from Gain and Frequency scores. We use an

average of our normalized scores :

Combined Importance =
1

2
Normalized Gain+

1

2
Normalized Frequency

We compute this metric for each features and at each iteration. Since we use a rolling model,

the model updates itself at each new iteration, thus we are able to compute the evolution of

features importance. This helps in analyzing the importance of our predictors depending on

the period and the performance of predictions, which is illustrated by the rolling IC curves.

8.2 Feature performance

We compute the combined performance across the whole period (1967-2023) by averaging the

results of each iterations. The total performance for both the Principal Component XGBoost

Regression and Di�usion Index XGBoost Regression can be observed on Figure 15 and Figure

16.

Figure 15: Feature Importance, XGBoost Principal Component Regression, 1967-2023
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Figure 16: Feature Importance, XGBoost Di�usion Index Regression, 1967-2023

Overall, all the predictors used, whether principal components or di�usion indexes have

strong feature importance in average. This suggests that most components contribute mean-

ingfully to the prediction process and highlights the advantage of models like decision trees,

which can e�ectively utilize a multitude of macroeconomic features. Housing and Aggregate

Supply are the best performing categories for the model used, but the di�erence with least

performing categories is not signi�cant. This observation suggests that our models can lever-

age the full range of provided predictors for forecasting, potentially explaining their superior

performance compared to models relying on single variables.

8.3 Evolution of performance

The evolution of combined importance of the predictors used for our model can be observed

on Figure 17 & Figure 18 in the heatmaps. First, we can observe the advantage of using a

rolling model because the importance of the predictors is evolving across the sample period,

which is enabled by the 20 and 30 years rolling window. This would not have been possible

using a static model. Secondly, we can observe that the best and least performing features

are very di�erent for di�erent periods of time. During the late 80s and 1990, PC 6, which is

linked to consumer credit, exhibits high performance in a context of shifting monetary policy

(changes in interest rates) and increased consumer spending. During the great �nancial crisis,

the PC 2 related to the Housing Market is the most important one. The housing market was

both a catalyst and a barometer of the economic downturn, with the collapse of housing prices

leading to widespread mortgage defaults and the subsequent failure of �nancial institutions

heavily invested in mortgage-backed securities Around 2018, the Prices component featured

prominently. Remarkably, the �rst principal component, capturing the aggregate supply, has

consistent performance across the whole sample, which can be expected for the main principal

component resulting from a PCA. For the Di�usion Index regression, we observe similar me-

chanics, with Housing and Output & Income being key features after 2020. This makes sense

in the post-pandemic context of that period, tainted with increasing demand for houses and

disrupted production.
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This rapid analysis reveals the bene�t of using rolling windows models that can take into

account shifting environments and multivariate models, able to combine the information con-

tained into multiple predictors.

Figure 17: Feature Importance Evolution, XGBoost Principal Component Regression, 1967-
2023

Figure 18: Feature Importance Evolution, XGBoost Di�usion Index Regression, 1967-2023

Conclusion

This paper has examined the complex relationship between macroeconomic factors and US

stock market returns. We employed a comprehensive approach, utilizing a large dataset of

125 macroeconomic variables and two distinct aggregation methods: Principal Component

Analysis (PCA) and di�usion indexes. Our macroeconomic signal, constructed with both PCA

and di�usion indexes aggregation method, exhibits a statistically signi�cant relationship with
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S&P 500 returns, demonstrating the potential of economic factors for predicting future market

movements. The signal's predictive power remains strong in both good and bad times. While

the signal exhibits overall reliability, a notable exception exists between 1990 and 1995. These

�ndings hold true even when extending the analysis to out-of-sample data on which the signal

performs well. Furthermore, the signal's performance is optimized for a 2-year time horizon,

re�ecting the long-term in�uence of economic factors on the market. In addition, there are

signi�cant di�erences in predictability across industries, with sectors like High-Tech and Non-

Durables showing stronger signal performance.

These �ndings provide valuable insights for investors and researchers seeking to leverage

economic factors for informed investment decisions. While further research is needed to fully

understand the complex dynamics at play, this study o�ers a signi�cant step forward in utilizing

macroeconomic data for factor timing and stock market prediction.
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Appendix

Figure 19: Correlation matrix heatmap between cyclical components
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Figure 20: Principal components analysis on cyclical components, Explained Variance
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Figure 21: Principal components factor loadings
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Macroeconomic clusters

The column tcode denotes the following data transformation for a series x:

1. no transformation;

2. ∆xt;

3. ∆2xt;

4. log(xt);

5. ∆ log(xt);

6. ∆2 log(xt).

The fred column gives mnemonics in FRED followed by a short description. The comparable

series in Global Insight is given in the column gsi.

Table 15: FRED macroeconomic cluster 1, Output & Income

Table 16: FRED macroeconomic cluster 2, Labor Market
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Table 17: FRED macroeconomic cluster 3, Housing Market

Table 18: FRED macroeconomic cluster 4, Consumption & Orders

Table 19: FRED macroeconomic cluster 5, Prices & In�ation

Table 20: FRED macroeconomic cluster 6, Money & Credit
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Table 21: FRED macroeconomic cluster 7, Interest Rates & FX

Table 22: FRED macroeconomic cluster 8, Stock Market
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